Model-Context-Protocol

For years, I’ve struggled with various AI APIs, and I’m now persuaded that the Model Context Protocol (MCP) is what we’ve all been looking for. Having implemented MCP servers and clients in projects as diverse as enterprise knowledge bases and customer support platforms, I’ve witnessed the impact this protocol is having firsthand.

So, what’s Model Context Protocol (MCP) all about?

Consider the good old days of the web when HTTP hadn’t yet standardized things.  Each server had its own quirky method of dealing with connections and data. That’s precisely where we’ve been with AI integration – a total mess of proprietary endpoints, inconsistent formats, and hacky workarounds.

MCP pierces through all that confusion. It’s essentially the HTTP for AI systems, an interoperability standard that enables your apps to communicate with any language model without needing to learn a new language every time.

Prior to MCP, whenever you needed to change AI providers, you’d have to dismantle your integrations and redo everything. 

Building blocks of MCP

MCP is not merely an API spec – it’s an architecture with a number of important components:

MCP Server

This is the place where the magic occurs. The server piece sits between your application and the real AI model and does all the work of translating needed. Model providers usually host these, but you also host them yourself if you need to have everything on-premises.

MCP Client

This is what your program utilizes in order to communicate with an MCP server. It takes care of all the protocol mechanics so your code doesn’t have to be bothered with the ugly details of serialization formats or connection management.

Client Host

This is your real application – maybe a web app, maybe a mobile app, who knows. It includes the MCP client in order to become AI super-powerful without getting bogged down in implementation details.

Context Store

Another MCP killer feature is the intelligent management of context. The context store is responsible for storing all the documents, chat history, and other data that is being sent to the model. Sometimes this is integrated into the server, but it may be independent as well.

Tool Host

When your AI needs to do things (such as access a database or call an API), the tool host makes those functions available in a standardized way that your model can access.

The magic of this design is the way it decouples things. Your app logic remains neat and concerned with user experience, and all the AI-y stuff gets done through a standardized pipeline.

Why should you care about MCP?

Let me explain why this protocol is important:

Model-hopping without the headaches

I was working last year on a project where we began with one AI provider, realized later that another had superior performance for our use case. Prior to MCP, this would have meant weeks of refactoring. With MCP, we simply pointed our client at a different server endpoint. Done.

No more vendor lock-in. No more huge rewrites when a new, better model is released. That right there is worth the cost of admission.

Sense-making context handling

MCP’s context handling is genius. Rather than trying to stuff everything into a prompt string, you pass structured context objects that the server can optimize as needed.
That’s right, this implies that you’re not wasting tokens on duplicate information, and you can get to choose which context is utilized where. The benefits? Reduced expenses, quicker response, and improved output.

Functioning tools

If you’ve attempted to employ tools/functions between various AI providers, then you understand that it’s an absolute disaster. Each provider has their own radically disparate implementation.
MCP automates all of this. Define your tools once, and they play nicely in any model that will support the protocol. This is a big deal for creating AI agents that actually can get things done.

MCP in the real world

I’ve used MCP in a number of production systems now, and the payoff has been enormous:

Knowledge management that actually works

For a customer who has well over 100,000 documents in their knowledge base, we implemented a RAG system based on MCP. The crisp division between model interaction and document management made all the difference.

When a superior model arose, we simply replaced the endpoint – no adjustments to our indexing, retrieval, or application code. The system simply worked, and worked better.

Customer support that doesn’t suck

For one project, we created a support bot that had to deal with complicated, multi-turn conversations and draw data from multiple backend systems.

MCP’s session management made it easy. The state of the conversation remained consistent over multiple interactions, and the simple tool interface meant effortless integration with current support systems.

No more fragile integrations or context windows full of boilerplate garbage. Just simple, efficient interactions.

How MCP actually works?

Here is the general flow of how an MCP interaction occurs:

  1. Your application makes a connection to an MCP server via a WebSocket connection.
  2. You establish a session for your selected model and receive a session ID in response.
  3. You submit context objects – these might be files your user uploaded, chat history from previous sessions, or definitions of tools the model can employ.
  4. When you’d like the model to perform some action, you send it a task – this might be generating some text, answering a question, or invoking one of your specified tools.
  5. The server responds in real time with streamed responses, so your UI remains responsive.
  6. The session remains open until you close it, retaining context between interactions.

This stream generates an everyday conversation pattern that applies to everything from basic Q&A to advanced multi-turn interaction with tool use.

The MCP ecosystem is expanding rapidly

First brought to market by Anthropic, the MCP standard has picked up serious steam. Industry leaders such as Cohere and Mistral are already onboard, and I’m seeing fresh implementations sprouting up weekly.

This isn’t another API spec that will be left to gather dust in six months’ time. There is actual industry alignment taking place here, facilitated by a mutual realization that today’s fragmentation is stalling AI adoption.

Getting started with MCP – or your feet wet

If you are eager to give MCP a go yourself, here’s how to do it:

  • Look at the official spec on modelcontextprotocol.io
  • Clone some of the reference implementations from GitHub
  • Consider which of your current AI integrations would prosper with the MCP method

The documentation is great, and the community is expanding quickly. Even if you don’t feel ready to go whole hog just yet, you will gain a better understanding of how AI integration ought to function by knowing the protocol.

Final thoughts

MCP is not simply another technology standard – it’s a revolution in the way we develop AI-driven applications. It’s the distinction between the wild west of early networking and the standardized web we all depend on today.

For developers, embracing MCP today is an intelligent wager on the future. You’ll develop more maintainable, portable apps, and you’ll be prepared to leverage new models as they become available.

The era of bespoke integration code for every AI vendor is limited. MCP is here to stay, and that’s a cause for celebration.


If you like this blog, you will also like this.

Subscribe to Toolhoot Weekly

Newsletter Form

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *